アスパラガスの萌芽及び地下部の生育に及ぼす秋期の温度条件の影響
平山俊一・野口敏治（大分県農業技術センター・大分県農業指導課）
Syun-ichi HIRAYAMA and Toshiharu NOUCHI: Effects of Temperature on Sprouting and Root Growth of Asparagus in September to November

アスパラガスは秋季になると茎葉が黄化して萌芽を停止し、貯蔵根に蓄積が蓄積していく。このため半月成長期を過ぎた栽培では茎の収穫ができなくなったり、収穫期間を延長するために根株を挿入して保温または加温により栽培している。しかし、根株の移植には多くの労力を必要とするので、栽培したまで収穫することが望まれている。そこで1年生株を用いて9月から11月の間に加温した場合のアスパラガスの萌芽及び地下部の生育についって検討した。

1. 試験方法
アスパラガス'パイル'を1992年2月6日に播種し、4月24日に圃場に定植し、これを8月15日に5000分の1aのワグネルピットに移植した。昼温（7時～17時）・夜温（17時～7時）をそれぞれA: 30～25°C, B: 25～20°C, C: 20～15°C, D：外温区（過去15年の外温の最高,最低気温の両方の平均, 第1図）に設定した人工気象室に、I: 9月3日、II: 10月2日、III: 10月12日の3回に分けてそれぞれ5カ所ずつ挿入した。なお、圃場においては雨が及ぼす影響及び霧の状態でのアスパラガスは9月上旬には萌芽は旺盛であるが、10月上旬になるに応じて早く、10月中旬にはほとんど認められない。人工気象室は日長は自然状態とし、相対湿度を90%に設定した。若茎が地上に出た時点を萌芽とし、若茎は収穫せず放任した。

2. 結果及び考察
外気温区の設定温度と外気温の最高、最低気温の変化を第1図に示した。外気の最低気温は外気温区の設定温度と同様に9月11日以降15°C以下となった。また、露地から人工気象室への搬入時の最低気温は9月3日が20.9°C, 10月2日が13.3°C, 10月12日が12.9°Cであった。

萌芽数に及ぼす秋期の温度条件の影響を第2図に示した。加温することにより11月30日まで萌芽し、萌芽数は30～25°C区が最も多く、25～20°C区がこれに次ぎ、20～15°C区の萌芽数はわずかであり、温度が高いほど萌芽数は多くなかった。しかし、外気温区では10月10日以降は萌芽せず、10月12日搬入の20～15°C区も萌芽しなかった。

地下部の生育及び反応2期の温度条件の影響を処理後調査し、第1表に示した。いずれの生長期でも温度が低いほど地下茎及び根の乾物産生量は高い傾向を示した。地下茎と根の乾物産生を比較すると30～25°C区では地下茎の乾物産生量が低いのに対し、25～20°C区はわずかに根の乾物産生量の方が、20〜15°C区と外気温区では根の乾物産生が明らかに高かった。すなわち温度条件による地下茎と根の乾物産生量は異なり、萌芽を停止すると地下茎よりも根の乾物産生が高くなることが明らかとなった。

貯蔵根のBrixはいずれの処理期間でも高温区よりも低温区の方が高まった。また、30〜25°C区と25〜20°C区及び20〜15°C区と外気温区のBrixの差はそれぞれ小さかった。

以上の結果、アスパラガスの1年生株は20°C以上に保持すると萌芽を絶え、さらに萌芽を続けている間は地下茎及び根の乾物産生と貯蔵根のBrixは低く推移し、地下茎や根の貯蔵養分の蓄積は自然状態に比べ少なくと推定された。

第1表 秋期の温度条件が地下部の生育に及ぼす影響

<table>
<thead>
<tr>
<th>処理開始日</th>
<th>温度条件</th>
<th>地下茎の乾物産生量</th>
<th>根の乾物産生量</th>
<th>貯蔵根Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>9月3日</td>
<td>30〜25°C</td>
<td>20.9</td>
<td>18.6</td>
<td>17.7</td>
</tr>
<tr>
<td>25〜20°C</td>
<td>21.3</td>
<td>23.7</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>20〜15°C</td>
<td>24.3</td>
<td>26.0</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>外気温区</td>
<td>27.8</td>
<td>30.4</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>10月2日</td>
<td>30〜25°C</td>
<td>19.4</td>
<td>18.0</td>
<td>15.4</td>
</tr>
<tr>
<td>25〜20°C</td>
<td>20.0</td>
<td>20.8</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>20〜15°C</td>
<td>22.8</td>
<td>27.5</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>外気温区</td>
<td>25.0</td>
<td>27.8</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>10月12日</td>
<td>30〜25°C</td>
<td>20.1</td>
<td>15.7</td>
<td>12.0</td>
</tr>
<tr>
<td>25〜20°C</td>
<td>20.9</td>
<td>18.7</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>20〜15°C</td>
<td>21.4</td>
<td>26.8</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>外気温区</td>
<td>24.2</td>
<td>26.8</td>
<td>25.0</td>
<td></td>
</tr>
</tbody>
</table>

第1図 外気温区の設定温度及び外気温の変化
第2図 秋季の温度条件が萌芽数に及ぼす影響