茶園における被覆尿素の施用時期と吸収、溶脱
内村浩二・鳥山光昭・寿江島久美子（鹿児島県茶業試験場）
Koji Uchimura, Mitsuaki Karasuyama and Kumiko Suemima: Influences of Time of Coated Urea Application on Nitrogen Absorption by Tea Plants and Nitrogen Leaching in Tea Garden

被覆尿素の施用時期と吸収、溶脱との関係を明らかにするため、ラインシメータにおいて^{15}N標識窒素を用いて検討した。

1. 実験方法

多様植栽黒ポケ土を充填したラインシメータ（1基3.6m²、深さ1m）の「やぶきた」10年生茶園において、'96年2月に^{15}N標識被覆尿素70日タイプと^{15}N標識硫酸アンモニウムを施用する区をそれぞれ設け、^{15}N標識窒素を窒素成分で7.7gm⁻²施用した。また、'96年9月に同様に窒素成分で7.7gm⁻²施用した。標識窒素施用後に採取した新芽・新葉および'97年5月に採取した古葉および枝につけて^{15}N標識窒素量を測定した。同様に浸透水に含まれる無機態の^{15}N標識窒素量を測定した。

2. 結果および考察

2月に施用した窒素の各器官への分配は、被覆尿素窒素が新芽・新葉へ施用量の8.4％、古葉・枝へ6.2％、硫酸アンモニウム窒素が新芽・新葉へ15.7％、古葉・枝へ7.8％が分配され、被覆尿素はさらに新芽・新葉への分配が少なかった（第1表）。

2月に施用した窒素の積算窒素溶脱量は、施用当日では被覆尿素窒素23％、硫酸アンモニウム窒素25％と被覆尿素で少なかったが、'96年2月～'97年6月では被覆尿素窒素38％、硫酸アンモニウム窒素31％と被覆尿素で多かった（第1図）。

9月に施用した窒素の各器官への分配は、被覆尿素窒素が新芽・新葉へ施用量の5.8％、古葉・枝へ16.3％、硫酸アンモニウム窒素が新芽・新葉へ9.1％、古葉・枝へ17.9％が分配され、被覆尿素で少なかった（第1表）。

9月に施用した窒素の積算窒素溶脱量は、'96年9月～'97年6月では被覆尿素窒素10％、硫酸アンモニウム窒素3％と被覆尿素で多かった（第1図）。

被覆尿素の樹体へ分配される割合は、9月施用が2月施用に比べて多くなる。9月施用の割合が高かった（第1図）。

以上、被覆尿素施用後10～15ヶ月では、硫酸アンモニウムに比べて地上部へ分配される窒素は少なく、窒素溶脱量も多かった。

第1表 被覆尿素窒素と硫酸尿素の樹体への分配（対施用N％）

<table>
<thead>
<tr>
<th>施用時期</th>
<th>供試肥料</th>
<th>樹体への分配</th>
<th>新芽・新葉</th>
<th>古葉</th>
<th>中切り枝</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>'96年2月</td>
<td>被覆尿素</td>
<td>8.4（57）*</td>
<td>4.9（34）</td>
<td>1.3（9）</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>硫酸</td>
<td>15.7（67）*</td>
<td>4.9（21）</td>
<td>2.9（12）</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>'96年9月</td>
<td>被覆尿素</td>
<td>5.8（26）* *</td>
<td>12.8（58）</td>
<td>3.5（16）</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>硫酸</td>
<td>9.1（34）* *</td>
<td>13.6（50）</td>
<td>4.3（16）</td>
<td>27.0</td>
<td></td>
</tr>
</tbody>
</table>

注）a）*: '96年一番茶、一番茶と二番茶、二番茶、秋製枝葉、'97年一番茶の計
b）*: *: '96年秋製枝葉、'97年一番茶の計
c）（ ）は採取した全樹体に占める各器官の割合％