ミカンハモグリガに対するクロロニックチル剤の効果

行徳 裕・磯田隆晴（熊本県農業研究センター果樹研究部）

Yutaka GYOYOKU and Takaharu ISODA: Effect of Chloronicotinyl Insecticides on the Citrus Leafminer

1. 試験方法

1) 感受性検定試験

果树研究所（熊本県松橋町）で自然発生した個体群を供試虫とし、1995年8月に行徳ら11）の方法で感受性を調査した。

2) 残効試験

鉱植えの川野なつだいを強効にして発芽を促すと

とともに、鉱全体をテシロゴースで灌ミカンハモグリ

ガによる産卵を防止した。強効14日後にテシロ

ゴースを取り除いて鉱果研究所内の場所に設置し、

自然発生している本種類成虫を産卵させた。24時間後再び

鉱をテシロゴースで灌、4日後に食入幼虫数と食

入幼虫の生存を調査した。試料は、テシロゴースを取

り除く3日、5日、7日または10日前に散布した。この

操作をイダクログリッド4,000倍については1994年9月

に、アセタミブリッドについては1995年9月に行った。

3) 散布間隔試験

強効にして残効試験と同様に発芽を促した鉱植えの川

野なつだいに対するイダクログリッドおよび

アセタミブリッドと、1995年7月18日から8月

8日まで7日、14日または21日間で散布した。8月

15日に1樹から50葉を無作為に選び、日本植物防疫協

会の調査基準に従い被害程度別葉数を調査した。なお、

試験は1区1樹3返復で実施した。

2. 結果および考察

1) 感受性検定試験

供試薬剤のミカンハモグリガに対するLC50値はイミ

ダクログリッドが0.22ppm、アセタミブリッドが0.25ppmで

あった。

2) 残効試験

試験結果から求めた相対食入幼虫数（処理区食入幼虫

数／無処理区食入幼虫数×100）および食入幼虫の死亡

率を第1図に示した。供試薬剤は散布3日後で幼虫

の食入を完全に防止し、7日まで幼虫の食入防止効果が

認められた。さらに、食入幼虫に対する殺虫効果は散布

10日後まで維持され、90%以上の幼虫が死亡した。これ

らの結果は、クロロニックチル剤がミカンハモグリガ

に対する幼虫剤と食入防止効果を持ち、この効果が散

布10日後まで維持されることを示唆している。

3) 散布間隔試験

散布間隔別の防除効果を第1表に示した。供試薬剤の

防除効果は散布間隔が短いほど高かった。ミカンハモ

グリガの防除では、被害指標を10以下に抑える必要があ

る。したがって適正な散布間隔は14日と考えられた。

引用文献

1) 行徳 裕・村井啓三郎・宮田哲至・磯田隆晴：応動

昆 40: 238－241, 1996。

2) 大久保隆宣：九病虫研究倉 39: 131－133, 1993。

第1図 クロロニックチル剤散布後の食入防止効果と幼虫殺虫

効果の推移

注) 1) イダクログリッド4,000倍,

アセタミブリッド2,000倍,

2) 相対食入幼虫数＝処理区の食入幼虫数／無処理区の

食入幼虫数×100

第1表 クロロニックチル剤の散布間隔と防除効果

<table>
<thead>
<tr>
<th>種類名</th>
<th>割合倍数</th>
<th>食入抑制</th>
<th>被害率</th>
<th>被害指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>イダクログリッド</td>
<td>4,000</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>フロパブリッド</td>
<td>14</td>
<td>3.3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>アセタミブリッド</td>
<td>2,000</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>水溶剤</td>
<td>14</td>
<td>4.7</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>無散布</td>
<td>－</td>
<td>－</td>
<td>96.0</td>
<td>87.0</td>
</tr>
</tbody>
</table>