全量基肥の植発施用がタマネギの生育、収量に及ぼす影響

甲斐田健史・江頭淳二・下村忠夫（佐賀県農業試験研究センター白石分場）　

Kenshi Kaida, Junji Egashira and Tadao Shimomura:
Effect of Single Application of Fertilizer on Planting Hole to Growth and Yield Onion

タマネギ栽培では、省力化が課題であるが、移植や収穫作業は省力化が進みつつある。しかしながら、施肥作業は、露地栽培では基肥と追肥で合計3回行っており、全量基肥への期待は大きい。そこで、施肥作業の省力化と減肥を目的として、秋まき露地植株栽培において全量基肥の植発施用について検討し、肥料の溶出率、タマネギの生育および収量等を明らかにしたので報告する。

1. 材料および方法

供試農地は「前田」、試験区は①全量基肥、植発施用100%（1996年のみ）、②全量基肥、植発施用80%、③対照区（基肥、追肥2回、速効性肥料）とした。全量基肥、植発施用については窒素をカリウムは被覆肥料を植発用に施し、リン酸は作業前に全面施用し土壌混和した。播種期は1996年9月24日、1998年9月28日、植発期は1996年11月27日、1998年11月26日とした。施肥は植発当日に行い、NPKは25 0 27 1 17 4 kg/10a（対照区、基肥N P K = 9 0 27 1 4 kg/10a）とした。栽培様式は観葉145cm、株間10cm、4条とした。調査は肥料溶出量、地温、生育、収量について行った。

2. 結果および考察

1）全量基肥の植発施用は、窒素施用量を対比（25kg/10a）の100%とすると欠株率が12%で対照の2倍近い値となった。この原因は肥料当たりと考えられる。一方、対照の80%施用では欠株率が対照と同等であった（第1表）。

2）全量基肥の植発施用の80%施用は、植発後から4ヶ月までに対照と同様の生育を示したが4月中旬より葉色がやや消光になった。また、収穫株率は91.5%で対照より5.5%低く、対照品の内訳では欠株が多く占め4.5%で対照より多かった。このことから、4月中旬以降より生育量に対して養分の供給量が追いづかず、4月中旬以降に肥料切れの状態になり残株の生育を促したものと考えられた（第2表）。

3）全量基肥の植発施用の80%施用は、収穫時の生育（株丈、葉数、総重、球重、球径、球高、葉鞘径）が対照より優れた。これは、生育後期まで肥料の溶出が続き、球肥初期にも収穫前の養分移脱だけでなく根部からの肥料吸収が行われていたと推察できる。また、総重、球高、球径、葉鞘径、球径の値は対照に同等で品種特性に変化はなかった（第3表）。

4）全量基肥の植発施用の80%施用は、規格別個数割合についてはL級が49.2%で対照より13%高く、LM級が88%で生育の良いが優れた。これは、施肥を植発に行ったので、1株当たりの養分供給量が対照より均一であったと考えられる。1球重は224gで対照より約30g多く、収穫量は5658g/10aで対照より約400g多くかった（第4表）。

5）窒素の被覆肥料の累計溶出率は、地温データからの推計値と埋め込みサンプルデータからの実測値を比較すると、実測値が推計値より2月下旬で61%、4月下旬で140%、4月下旬で121%、5月下旬で95%低い値となった。なお、収穫時（5月下旬）の累計溶出率は、推計値が94.7%、実測値が85.2%であった。

以上の結果から、秋まきタマネギ露地植株栽培において全量基肥の植発施用は、窒素とカリウムの被覆肥料を用いることにより作業の省力化と10%の施肥量の減量化が可能と思われる。また、今後の課題としては、既存の全自動植発機・施肥機の植発機能の開発、窒素、リン酸、カリウムの被覆肥料の適量の検討、施肥の検討および条播施肥機の開発等を考えられ、肥料メーカー又は農業機械メーカーの研究開発を期待したい。