熱土壌消毒が土壌中の細菌群と原生動物群の動態に及ぼす影響

橋本知義・西 和文
(九州農業試験場)

Tomoyoshi HASHMOTO and Kazufumi NISHI:
Effect of Soil Sterilization with Hot Water Injection on Bacterial and Protozoan Dynamics

土壌中の原生動物群は、細菌等被食者から取り込んだ養分の60%程度をアンモニア型窒素等の無機成分として体外へ排出する。また、土壌中のアンモニア型窒素は硝化細菌により硝酸型窒素をさらに硝酸態窒素へと転換される。このように、多様な微生物群が土壌中の窒素代謝に関与している。有機メチル代謝の防除技術として注目されている熱水土壌消毒が、土壌中の窒素代謝に関与微生物群に及ぼす影響については明らかにされていない。土壌蒸製処理の場合、死滅した微生物群が弾くなるか、菌数が増加し、その結果土壌中の窒素代謝が促進される現象、すなわち部分放散効果が知られている。熱水土壌消毒の場合、消毒の場合にも消毒効果が期待されるので、土壌中の微生物群の生存部位に着目し、土壌土壌消毒処理後の一般細菌数、硝化細菌数および原生動物群の動態を調査した。

1. 試験方法

2000年5月25日に熱水注水量150L/m²で熱水土壌消毒処理を行った。6月2日に葉マイコンを採掘し、検淵15cm越え23cmとして無施肥で栽培した。なお、供試圃場には前年に牛糞堆肥を2ｔ/ha適用されている。

土壌土壌消毒処理4、21、42、63日後に、処理区および対照区の検淵表層から土壌試料を採取した。無機態窒素含有量は2NKClで抽出し、蒸留法で定量した。浄化浄波法により土壌細菌数を計数した。生菌数は10倍希釈楽園培地を用い希釈平均法により、硝化細菌数と原生動物数はMPN法により計数した。生菌数の計数の際には、コロニー形成曲線解析法を適用し、増殖の速い細菌群と増殖の速い細菌群とに分画し計数した。土壌試料は2回反復で採取し、実験結果はその平均値で示した。

2. 結果および考察

対照区では植物の吸収等により経時的に無機態窒素含有量が減少したのに対し、処理区では熱水土壌消毒処理直後以外は対照区よりも無機態窒素含有量が高くなった(第1図)。熱水注水量が150L/m²(降雪150mm相当量)であることおよび土壌採取深度が深度2cm 〜 5cmであることから、熱水土壌消毒処理直後の窒素含有量の低下は熱水注水による無機態窒素の溶脱によるものと推察した。

増殖の速い細菌群、増殖の速い細菌群ともに浮遊型細菌群(比較的速く土壌粒子に吸着するもの)は熱水土壌消毒処理後3〜5週間程度で対照区の生菌数にまで増加した。一方、吸着型細菌群(比較的強く土壌粒子に吸着するもの)の場合、生菌数の増加が遅れる傾向を示した。特に増殖の速い細菌群は、調査期間を通じて対照区追込みの生菌数には増加しなかった。

熱水土壌処理直後には10倍オーダーまで減少した硝化細菌群は経時的に増加し、アンモニア酸化細菌は概ね5週間後には、亜硝酸酸化細菌も概ね9週間後には対照区並みの数値にまで増加した。アンモニア酸化細菌の場合、吸着型よりも浮遊型の菌数増加が遅れる傾向を示した(第2図)。

原生動物群は経時的に増減するが、熱水土壌消毒処理の影響はほとんどみられず、10^4〜10^5cells/g乾土レベルで推移した。細菌数値、アンモニアにかかわる熱水土壌消毒処理直後の菌数変動は認められなかった。細菌の場合は、対照区では10^2〜10^6cells/g乾土レベルで推移したにもかかわらず、土壌土壌消毒処理直後に10^6cells/g乾土レベルまで減少した菌数が経時的に増加する傾向を示し、特に大型の細菌数の増加が顕著であった。

引用文献