ナスの促成栽培は、自然結果では落花や石ナス果が発生しやすいため、着果促進に合成オキシン誘導の単化処理が行われている。しかし、単化処理は多くの労力を要するため、着果促進を必要としない品種の栽培に求められている。本稿では、農林水産省が育成した単化果実性系統について、促成栽培における適応性を明らかにして良好系を選定するとともに、選定した系統について収量を向上させる主枝仕立方法を検討した。

1. 材料および方法

試験1：着果および果実品質が良好な系統の選定

‘筑陽’を対照品種として、農林水産省育成の単化果実性系統‘95-24’、‘95-41’および‘96-1’を1999年11月15日に定植し、翌年7月まで生育、開花、結果状況および収量を調査した。主枝仕立方法は4本Ⅴ字仕立（主枝本数4本1条枝、株間60cm）とし、供試株数は1区3株とした。

試験2：主枝仕立方法と生育・収量

試験1で供試した‘96-1’を2000年9月25日に定植し、主枝仕立方法として、①2本垂直仕立（主枝本数2本2条枝、株間60cm）、②3本垂直仕立（主枝本数3本2条枝、株間90cm）、③4本垂直仕立（主枝本数4本2条枝、株間120cm）、④4本Ⅴ字仕立（主枝本数4本1条枝、株間60cm）を設け、供試株数は1区3区の8株とした。

なお、試験1、2ともに、畳幅200cm、主枝本数3.33本/㎡とし、最低気温13℃に設定し、最大果実径3cmに達した果実を収穫した。

‘筑陽’は、定植後110日で10cm×10cm×20cmの単化処理を行い、単化果実性系は自然結果とした。

2. 結果および考察

試験1：主枝摘果日

‘96-1’は着果の遅いため、他の系統に比べ30日程度遅かった。

開花数は、‘筑陽’に比べて‘95-24’および‘95-41’が同程度で、‘96-1’が76%と少なかった。結果率も正常肥大果率は、‘96-1’が‘95-24’および‘95-41’よりも高く、単化処理を行った‘筑陽’と同等であった。総収量は‘筑陽’が最も多く、次いで‘95-24’であった。上物収量は‘筑陽’よりも高く、次いで他の系統より良好が生産が少ない‘96-1’であった（第1表）。

試験2の結果は、‘筑陽’が最も早く2月7日で、‘96-1’では2本垂直仕立がもっと早く2月24日であった。試験3の結果は、‘96-1’が最も早く2月24日で、正常肥大果率が‘筑陽’より多い。収量は‘筑陽’が最も多く、次いで‘95-41’が多かった。‘筑陽’の上物収量は、主枝仕立方法による差はみられず、どの仕立も高かった。

以上の結果から、単化果実性系‘96-1’は、促成栽培の全期間において単化処理を省略しても大部分の果実が正常に肥大し、収穫作業時間が短い、省力的な系統であると考えられる。また、‘96-1’は、4本Ⅴ字仕立では主枝の生長が遅いために‘筑陽’よりも収量が低いが、2条枝垂直2本仕立すると主枝の生育が早くなり‘筑陽’と同程度の収量が得られる。

第1表 农林水産省育成果実性系統の着果特性および収量・品質（試験1）

<table>
<thead>
<tr>
<th>品種・系統</th>
<th>主枝仕立</th>
<th>開花数（株/㎡）</th>
<th>結果数（株/㎡）</th>
<th>総収量（株/㎡）</th>
<th>人工肥大果数（株/㎡）</th>
<th>人工肥大果率（%）</th>
<th>収量（kg/㎡）</th>
<th>不良果発生割合（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-24</td>
<td>5/8</td>
<td>160</td>
<td>52</td>
<td>85</td>
<td>92</td>
<td>9.5</td>
<td>3.1</td>
<td>49</td>
</tr>
<tr>
<td>95-41</td>
<td>5/15</td>
<td>140</td>
<td>79</td>
<td>104</td>
<td>95</td>
<td>12.5</td>
<td>4.6</td>
<td>55</td>
</tr>
<tr>
<td>96-1</td>
<td>6/11</td>
<td>114</td>
<td>96</td>
<td>94</td>
<td>99</td>
<td>8.8</td>
<td>7.8</td>
<td>17</td>
</tr>
<tr>
<td>96-1</td>
<td>7/12</td>
<td>150</td>
<td>124</td>
<td>122</td>
<td>98</td>
<td>15.8</td>
<td>3.0</td>
<td>38</td>
</tr>
</tbody>
</table>

注：a) 開花数，結果数，正常肥大果率：7/18開花分まで集計，収量：7/11収穫分まで集計
b) 結果数：開花数/（開花数-落花数）×100，正常肥大果率：結果数/（結果数-落果数）×100

第2表 主枝仕立方法と単化果実性系統の着果，収量，上物品率および整枝時間（試験2）

<table>
<thead>
<tr>
<th>品種・系統</th>
<th>主枝仕立</th>
<th>開花数（株/㎡）</th>
<th>結果数（株/㎡）</th>
<th>収量（kg/㎡）</th>
<th>上物品率</th>
<th>整枝時間（分）</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-1</td>
<td>2本垂直</td>
<td>160</td>
<td>94</td>
<td>105b</td>
<td>1.9b</td>
<td>6.8b</td>
</tr>
<tr>
<td>3本垂直</td>
<td>160b</td>
<td>103b</td>
<td>103b</td>
<td>3.5b</td>
<td>9.3b</td>
<td>14.4b</td>
</tr>
<tr>
<td>4本垂直</td>
<td>130c</td>
<td>95</td>
<td>101b</td>
<td>6.0b</td>
<td>3.8b</td>
<td>12.0b</td>
</tr>
<tr>
<td>4本Ⅴ字</td>
<td>130b</td>
<td>95</td>
<td>101b</td>
<td>6.0b</td>
<td>3.8b</td>
<td>12.0b</td>
</tr>
</tbody>
</table>

注：a) 開花数，正常肥大果率：6/18開花分まで集計，収量：7/2収穫分まで集計
b) 整枝時間：落果分，落果分，落果分，落果分，落果分，落果分，落果分，落果分
 c) Tukeyの検定により有意差有り5%水準で有意があり

九州農業研究 (九農研) 第64号 (2002.5) 野菜・花の部会 (11) 福岡農業大学農業試験場 (1) 野菜研究室
Akira Ishizaka, Keiko Inoue, Yasushi Shiraishi and Tatemi Yoshida
Characters of Parthenocarpic Eggplant ‘96-1’ on Forcing Culture