衝撃式センサを利用した肥料流量センサの開発

関正裕・高橋仁康・田坂幸平
(九州沖縄農業研究センター)

Masahiro Seki, Kimitasu Takahashi and Kobei Tasaka:
The Flow Sensor by the Measurement of Individual Fertilizer Particles

実際の施設作業において、単位面積当たりの散布量の調整は少量の肥料を出して行う場合が多い。散布量を確認できる作業終了後になることなどの問題がある。そこで、田植機で使用されている肥料切れセンサを利用し、粒数測定から粒状肥料の散布量の推測を試みた。

1. 実験装置および方法

試作した肥料流量センサは、田植機の肥料切れセンサを利用し、肥料の粒をセンサで検出し、出力されたパルスから粒数をカウントするものである。これらの処理はシーケンスで行い出力結果はデジタルおよびアナログ出力ができるようになった。

本センサを繰出しロール式施肥機に装着し、肥料流量とセンサ出力の関係を、静置試験および圃場で調査した。使用した肥料は、成化肥料34号(15-4-14)である。また、肥料は各試験ごとに新しい肥料を供試し、再使用をしないこととした。施肥流量の実測値は電子天秤にて測定を行い、PCで1秒間隔でデータのサンプリングを行った。

施肥精度は、散布幅1.5 m(4列)、作業速度毎秒1 mのときに10m当たり窒素量で1 kg単位(1条当たり144g/sec)、設定散布量で±10%の散布を目標とする。

2. 結果および考察

衝撃センサのパルス出力を第1図に示す。分析法から1秒間に240個の測定が可能であるが、本結果からも波形のピークをカウントすることにより同程度の精度で粒数の測定が行えすることが確認できた。

第1図 衝撃センサのパルス出力波形

静的な条件で連続的に肥料を流出させたままの状態でセサ出力(アナログ値)と実際の肥料流量を比較したところ直線的な相関関係がみられた。また、1分間当たりの散布電圧(x)と流量(y)の関係をみたところ、第2図に示すように以下の直線関係がみられた。

\[y = 93.6 \times x - 354 \quad (R^2 = 0.985) \]

第3図に示すように肥料流量を変化させたとき1式より求めたセンサの流量推定と実際の流量はほぼ一致したが、窒素量で1 kg以下では実際の流量が若干多めになり、それ以上ではほぼ正確な推定ができただと判断された。

第2図 流量と散布電圧の関係

第3図 センサによる推定流量と電子天秤による測定流量との測定結果

圃場で大豆播種機の施肥部分にセンサを装着し、作業速度0.4～0.5m/sec、作業長約60m(約1 a)で4回試験を行ったところ、推定散布量が実際の散布量より多少なくなり約5～15%程度の誤差がみられた(第1表)。

第4図 推定散布量と実際の散布量の差

以上のことから、窒素量で1 kg程度の測定や作業時の静置時の差異などの問題点があるものの、本方式で粒状肥料流量を容易に測定できると思われた。また、本装置の精度を向上するためには肥料の粒がセンサに確実に当たるような繰り出しロールからの導管を考案する必要があると思われた。