3 撮苗後の生育と収量

45年の調査では（第2表参照）、冷床苗は電熱温床のものに比べて地上部の生育量が少ない傾向がみられ主茎の短縮、枝数の減少により10月の最終調査では地上部重が15％少なかった。地下部重は早摘り調査の総も重で、冷床区が5％ほど劣ったが上手も

第4表 収穫物調査（昭45年）

<table>
<thead>
<tr>
<th>項目</th>
<th>裁摘重（8月10日）</th>
<th>上手も重</th>
</tr>
</thead>
<tbody>
<tr>
<td>電熱温床</td>
<td>Kg</td>
<td>Kg</td>
</tr>
<tr>
<td>電熱苗床</td>
<td>12.5</td>
<td>36.8</td>
</tr>
</tbody>
</table>

4 む す び

甘藷の育苗は従来電熱または電熱による30～32℃ぐらいの育苗温度が必要とされてきたが、水稲の畑苗代同様の方法で苗苗を試みた結果、育苗期50日の値算気温700℃でりどりの地方においても、

ホッ プ の 生 産 力 向 上 に 関 す る 研 究

第3報 ホップに対する土圧改良剤の深層施用効果について

結 城 勇 助

（山形県農試）

1 ま え が き

近年各地のホップの生産量の停滞が目でしてきたおり、これが原因の特徴が急げれ、その実態調査を第1報、第2報の研究報告で発表したが、その結果として

2 調 査 方 法

1 調査場所：西置賜郡白瀬町中善寺、唐松

昭和45年4月13日 白瀬町中善寺

昭和45年5月24日（報破）

昭和44年4月22日（手）朝日町水本

3 調査場所の特徴：

各調査地とも年々生産量の低下が大きいこと、土が

固く根の張りが浅く、雨の浸透が非常に悪いこと、また

強酸性、石灰、苦土、腐植などが非常に不足していること、特に下層土が著しく悪いため初期生育はよいが、結果形成期の肥大充実出が多いの

はビール会社、ホップ農協の御協力を賜ったこと

について深くお礼申し上げる。
第1表 施行前土壌断面および理化学的性質

| 調査場所 | 層 | 土性 | 燃性 | 発炭泥炭 | 断層の有無 | 水性 | pH | H2O | KCl | Y1 | Cao | MgO | K2O | CEC | 吸植 | V | 涼田式有効 | F | 水 | 被 | 備考 |
|----------|----|------|------|----------------|-----------|--------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 白鳥町 (中善寺) | 0 | He | 1 | 3 | 2 | 14 | 0.1 | 5.7 | 4.8 | 0.9 | 0.207 | 24 | 125 | 20.7 | 1402 | 4.6 | 0.25 | 3.5 | 4.30 | 生産力高 |
| 40 | He | 1 | 3 | 1 | 10 | 17 | 0.1 | 5.2 | 4.5 | 2.9 | 0.159 | 21 | 56 | 20.2 | 1018 | 2.1 | 0.152 | 3.8 | 3.90 |
| 90 | He | 1 | 3 | 1 | 18 | 18 | 0.7 | 5.0 | 4.0 | 6.7 | 0.150 | 19 | 42 | 15.3 | 940 | 2.9 | 0.168 | 4.2 | 3.59 |
| 32 | He | 1 | 3 | 1 | 22 | 15 | 4.8 | 4.0 | 18.7 | 257 | 35 | 22 | 47.1 | 948 | 0.7 | 0.075 | 0.7 | 4.04 |
| 白鳥町 (唐松) | 0 | He | 1 | 3 | 2 | 18 | 0.4 | 4.5 | 3.95 | 21.9 | 46 | Tr | 75 | 26.5 | 1528 | 6.1 | 0.221 | 8.4 | 4.28 |
| 8 | He | 1 | 3 | 1 | 17 | 0.3 | 4.05 | 3.95 | 43.2 | 46 | Tr | 37 | 31.2 | 1362 | 0.8 | 0.074 | 0.7 | 4.91 |
| 90 | He | 1 | 3 | 1 | 16 | 0.8 | 4.5 | 3.95 | 27.3 | 26 | Tr | 37 | 18.3 | 1814 | 0.7 | 0.067 | 1.4 | 4.04 |
| 白鳥町 (唐松) | 0 | He | 1 | 3 | 2 | 14 | 0.4 | 5.3 | 4.5 | 3.4 | 8.2 | 13 | 75 | 19.6 | 1462 | 7.8 | 0.279 | 11.2 | 5.22 | 生産力低 |
| 20 | He | 1 | 3 | 1 | 16 | 0.8 | 4.5 | 3.95 | 27.3 | 26 | Tr | 37 | 18.3 | 1814 | 0.7 | 0.067 | 1.4 | 4.04 |
| 90 | He | 1 | 3 | 1 | 25 | 5.2 | 3.95 | 28.9 | 12 | 1 | 14 | 18.9 | 1250 | 1.9 | 0.07 | - | 4.14 |
| 60 | LIC | 1 | 0 | 25 | 5.2 | 3.95 | 28.9 | 12 | 1 | 14 | 18.9 | 1250 | 1.9 | 0.07 | - | 5.00 |

（根量の不足）干ばつを受けやすいことなどにより収量の低下が大きいほ場である。なお、昭和42年（調査前）に行なった土壌断面および理化学的性質は第1表のとおりである。

4 操作

注入法は深層土壌改良機（ソイラーや使用し、各調査場所に深さ60cmまで土壌の硬さを動かすため下記材料を注入した。

中善寺ではベルマグ90kg、苦土石灰180kg、唐松300kgの土壌改良を行なった。

所定の土壌10cm層にベルマグ100kg、苦土石灰200kg、水本ベルマグ100kg、苦土石灰300kgの土壌改良を行なった。注入後の注入ノズル13ℓ/分、送液特別ポンプ側7ℓ/分で薬液吐出量6.5ℓ/分で注入を行なった。

爆破試験の操作については中善寺の3aの18畑について行なった深さ60cmに爆破一穴50cmずつ装薬し、

昭和43年12月5日（曇）
昭和44年8月4日（晴）
昭和45年8月7日（前日雨、当日晴）

3 調査結果および考察

初年度は各処理8か月後に土壌採取を行ない、それぞれ所有の分析を行なった。2年度、3年度については調査時の栽培形成期の8月上旬にそれぞれ土壌の採取を行なった。
第2表 ソイラーと爆破による各要素の変化（3カ年）

<table>
<thead>
<tr>
<th>処理所</th>
<th>層位</th>
<th>標準</th>
<th>40cm</th>
<th>20cm</th>
<th>0cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>CaO</td>
<td>MgO</td>
<td>pH</td>
</tr>
<tr>
<td>場所</td>
<td></td>
<td>H₂O</td>
<td>KCl</td>
<td>mg</td>
<td>mg</td>
</tr>
<tr>
<td>中善寺</td>
<td>20</td>
<td>5.95</td>
<td>5.2</td>
<td>155.3</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.54</td>
<td>4.4</td>
<td>125.4</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.3</td>
<td>4.5</td>
<td>112.7</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>5.3</td>
<td>4.2</td>
<td>95.9</td>
<td>27.1</td>
</tr>
<tr>
<td>ソイラー</td>
<td>20</td>
<td>5.2</td>
<td>4.4</td>
<td>55.5</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4.28</td>
<td>4.1</td>
<td>44.9</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.3</td>
<td>4.0</td>
<td>41.6</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>4.3</td>
<td>4.0</td>
<td>40.1</td>
<td>5.5</td>
</tr>
<tr>
<td>水本</td>
<td>20</td>
<td>4.6</td>
<td>4.0</td>
<td>56.6</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4.6</td>
<td>4.1</td>
<td>34.1</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.6</td>
<td>4.1</td>
<td>18.0</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>4.7</td>
<td>4.1</td>
<td>10.9</td>
<td>3.5</td>
</tr>
<tr>
<td>中善寺</td>
<td>20</td>
<td>6.17</td>
<td>5.25</td>
<td>172.3</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5.62</td>
<td>4.55</td>
<td>110.6</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>5.5</td>
<td>4.4</td>
<td>103.5</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>4.97</td>
<td>4.05</td>
<td>156.1</td>
<td>24.2</td>
</tr>
<tr>
<td>爆破</td>
<td>20</td>
<td>5.97</td>
<td>4.9</td>
<td>178.3</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4.45</td>
<td>4.17</td>
<td>49.0</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.4</td>
<td>4.1</td>
<td>28.3</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>4.3</td>
<td>4.1</td>
<td>23.7</td>
<td>7.0</td>
</tr>
<tr>
<td>唐松</td>
<td>20</td>
<td>4.7</td>
<td>4.0</td>
<td>56.0</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>4.6</td>
<td>4.1</td>
<td>42.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>4.5</td>
<td>4.1</td>
<td>27.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>4.4</td>
<td>4.0</td>
<td>18.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

注: 株より左右20, 40cmと調査を行なったものを平均とした。

取を行ないpH, 置換性塩基などの含有量とその変化について調査を行なった結果は第2表のとおりであった。

1 ソイラーについては注入する資材は希望する所定位置まで注入することが可能であるが、場全面に注入するということは困難であり、また、硬度20以上（中間式）の下層土の場合、所定位置までの注入が不可能であり、物理性の改善もやや困難のように観察された。

したがってソイラーによる肥料の注入による土壌改良の効果が顕著であるが、横壌の物理性の改善については問題が多く、今後の検討をまたなければならないようである。

2 爆破については物理性は非常に効果が高く土壌改良が顕著に認められ（第3表）るが、ただ爆破の範囲は狭いため、これが爆破穴を増すことによって解決されるが穴の外側が固くしめる欠点が多く、また、原費が多くかかり過ぎることが問題である。また、爆破穴の埋戻しの方法と改良資材の下層土までの投入と混合がやや難しいように感じられる。

3 三相分布の変化は中善寺、唐松、水本ともに爆破による2層、3層、4層までの効果は第4表のとおりであるが、爆破より60cm前後までの三相の割合が良好に認められた。また、標準区の20, 40, 60cmと深くになると従がい気相の割合が少なくなる。固相の割合が極端に多くなるに比べて爆破の三相分布の割合が良くなり、3年度後の分布の割合も同様であった。
第3表 瓶破による硬度、透水性

<table>
<thead>
<tr>
<th>材理</th>
<th>場所</th>
<th>深さ</th>
<th>硬 度</th>
<th>透 水 性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>標準</td>
<td>40 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>26.6</td>
</tr>
<tr>
<td>破</td>
<td>唐</td>
<td>20</td>
<td>10.0</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>17.0</td>
<td>13.7</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>19.0</td>
<td>17.3</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>23.5</td>
<td>19.6</td>
<td>18.6</td>
</tr>
<tr>
<td>破</td>
<td>松</td>
<td>20</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>18.0</td>
<td>15.5</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20.0</td>
<td>15.5</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>28.0</td>
<td>22.0</td>
<td>23.0</td>
</tr>
</tbody>
</table>

第4表 三相分布の変化（3年間平均）

<table>
<thead>
<tr>
<th>場所</th>
<th>深さ</th>
<th>気相</th>
<th>液相</th>
<th>固相</th>
<th>気相</th>
<th>液相</th>
<th>固相</th>
<th>気相</th>
<th>液相</th>
<th>固相</th>
<th>気相</th>
<th>液相</th>
<th>固相</th>
</tr>
</thead>
<tbody>
<tr>
<td>中善寺</td>
<td>20</td>
<td>24.3</td>
<td>36.5</td>
<td>39.2</td>
<td>30.4</td>
<td>32.0</td>
<td>37.6</td>
<td>25.2</td>
<td>44.4</td>
<td>40.4</td>
<td>30.2</td>
<td>35.9</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>13.3</td>
<td>37.7</td>
<td>40.0</td>
<td>25.2</td>
<td>45.8</td>
<td>28.7</td>
<td>26.2</td>
<td>39.9</td>
<td>39.9</td>
<td>20.8</td>
<td>37.1</td>
<td>42.1</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>10.8</td>
<td>42.1</td>
<td>42.1</td>
<td>26.4</td>
<td>37.5</td>
<td>36.1</td>
<td>25.8</td>
<td>37.5</td>
<td>40.0</td>
<td>24.2</td>
<td>42.0</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>8.4</td>
<td>42.2</td>
<td>49.4</td>
<td>10.8</td>
<td>44.0</td>
<td>45.2</td>
<td>13.5</td>
<td>42.0</td>
<td>44.5</td>
<td>10.8</td>
<td>47.4</td>
<td>41.8</td>
</tr>
<tr>
<td>唐 松</td>
<td>20</td>
<td>30.7</td>
<td>38.5</td>
<td>39.8</td>
<td>24.8</td>
<td>39.4</td>
<td>35.8</td>
<td>29.2</td>
<td>37.8</td>
<td>33.0</td>
<td>19.3</td>
<td>43.4</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>16.2</td>
<td>44.9</td>
<td>38.9</td>
<td>27.2</td>
<td>37.6</td>
<td>35.2</td>
<td>28.8</td>
<td>38.4</td>
<td>32.8</td>
<td>24.6</td>
<td>34.2</td>
<td>41.2</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>12.3</td>
<td>42.7</td>
<td>45.0</td>
<td>24.9</td>
<td>32.5</td>
<td>42.6</td>
<td>26.1</td>
<td>41.2</td>
<td>32.7</td>
<td>25.8</td>
<td>35.7</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>10.9</td>
<td>43.4</td>
<td>45.7</td>
<td>10.1</td>
<td>59.9</td>
<td>39.0</td>
<td>15.0</td>
<td>45.1</td>
<td>39.9</td>
<td>9.6</td>
<td>48.4</td>
<td>41.9</td>
</tr>
<tr>
<td>水 本</td>
<td>20</td>
<td>35.1</td>
<td>31.9</td>
<td>33.0</td>
<td>22.8</td>
<td>39.5</td>
<td>37.9</td>
<td>21.2</td>
<td>36.2</td>
<td>42.6</td>
<td>13.7</td>
<td>44.9</td>
<td>41.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>17.7</td>
<td>36.7</td>
<td>35.6</td>
<td>22.4</td>
<td>45.4</td>
<td>32.2</td>
<td>21.8</td>
<td>40.7</td>
<td>37.5</td>
<td>17.9</td>
<td>44.8</td>
<td>57.3</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>12.4</td>
<td>44.8</td>
<td>42.8</td>
<td>25.1</td>
<td>40.9</td>
<td>36.0</td>
<td>26.5</td>
<td>35.8</td>
<td>37.7</td>
<td>20.9</td>
<td>35.9</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>10.1</td>
<td>43.6</td>
<td>46.3</td>
<td>17.9</td>
<td>39.6</td>
<td>42.5</td>
<td>28.0</td>
<td>37.4</td>
<td>34.6</td>
<td>12.3</td>
<td>41.7</td>
<td>46.0</td>
</tr>
</tbody>
</table>

4 根群の状態をみるため，8月上旬に瓶形成期に
おける調査では瓶破後2年目になると中善寺，唐松
ともに根群の発達は活発であることが観察され，特に
10〜30 cm らくらいの間に根群が多く発達しているこ
とが観察された。また，3年後における根群の観察で
も非常に根の発達がよくなって瓶破穴内ののみの発達が多
いことが判明した。

4 まとめ

成園のホップ畑の下層土の改良方策として予想され
るものは，株の両側を手掘りにより（昭43実施，昭
44 調査）で効果が大きい）年次計画を有殖で実施す
るとか，機械力利用により株の両側を壁塀に掘り上
げ，掘上げ後に粗大有機物と土壌改良資材の投入を図
ることが最も適切な改良方策ではなかったか。

特に成園畑の改良は，3 年間にわたる調査結果より
みて問題があるのでできるかぎり新植前生土壌調査，
植穴を壁塀に掘り上げ，粗大有機物，土壌改良資材
の投入を行ない植付けを行いすることが最も重要であり，
必要欠欠べからざる手段ではなかろうか。