土壤改造に伴う畑作物の養分吸収
第2報 いも類及び豆類の養分吸収について
桜井 一男・新毛 晴夫・遠藤 征彦
(岩手県農業試験場)

1 まえがき
前報では、イネ科畑作物の養分吸収について、陸穀、トウモロコシ、クサモロコシについて報告したが、引き続きいも類と豆類の養分吸収について報告する。

2 試験方法
1 試験条件及び作物分析方法は前報と同様である。
2 供試作物及び品種
バレイショ・・・男じゃく ダイズ・・・ライデン
アズキ・・・大館2号 インゲン・・・大正金時

3 試験結果
1 バレイショの養分吸収について
金ヶ崎における試験の各時期別養分濃度を部位ごとに第1図に示す。(1)改造による養分濃度の変化は、葉と茎では改造によりN、P₂O₅、K₂O濃度が高まる傾向を示す。2)時期別養分濃度の変化、葉茎では生育に伴う濃度の変化が明らかになり、いもでは生育全般を通じてほぼ一定の値で経過する。未改造区と改造区の比較では各部位、各養分により同様でない。
(3)でん粉畑 改造区間・栽培条件の同一で別の試験におけるでん粉畑を金ヶ崎と溝沢について示すと第1表の通りである。

2 ダイズの養分吸収について（金ヶ崎）
収穫時の部位別養分濃度を第2表に示す。P₂O₅とMgOは改造によって濃度が高まる。

3 アズキ（金ヶ崎）とインゲン（溝沢）の養分吸収について
両作物の時期別養分濃度の変化をそれぞれ第2、3図に示す。(1)アズキ、インゲンともP₂O₅とMgOは改造によって高まる傾向を示す。(2)時期別養分濃度の変化については、アズキでは葉身、茎、さやにおける変化は各養分により同様でないと子葉中の養分濃度は生育全般を通じてほぼ一定の値で経過する。未改造区と改造区の比較ではP₂O₅とMgOは各部位とも改造区の方が高く経過する傾向を示す。また図示しないが、溝沢で行った試験でもほぼ同様の傾向を示した。インゲンについてもアズキとほぼ同様の傾向を示す。

4 総養分吸収量について
各作物の総養分吸収量を第3表に示す。バレイショのCaOを除いて、各養分とも改造により増加する。アズキについては土壌化学性の異なる金ヶ崎と溝沢を比較するとその傾向は一概でない。

第1表 でん粉畑について

<table>
<thead>
<tr>
<th>部位</th>
<th>未改造区</th>
<th>改造区</th>
</tr>
</thead>
<tbody>
<tr>
<td>金ヶ崎</td>
<td>13.2%</td>
<td>14.4%</td>
</tr>
<tr>
<td>溝沢</td>
<td>14.7%</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

第2表 ダイズの部位別養分濃度（%）

<table>
<thead>
<tr>
<th>部位</th>
<th>葉</th>
<th>茎</th>
<th>英</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5.47</td>
<td>5.27</td>
<td>96.3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.89</td>
<td>0.99</td>
<td>111.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.77</td>
<td>2.44</td>
<td>88.1</td>
</tr>
<tr>
<td>CaO</td>
<td>2.28</td>
<td>2.60</td>
<td>114.0</td>
</tr>
<tr>
<td>MgO</td>
<td>0.37</td>
<td>0.56</td>
<td>151.4</td>
</tr>
</tbody>
</table>

第3表 総養分吸収量

<table>
<thead>
<tr>
<th>作物</th>
<th>バレイショ</th>
<th>ダイズ</th>
<th>アズキ</th>
<th>インゲン</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>未改造</td>
<td>12.14</td>
<td>20.75</td>
<td>3.89</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>改造</td>
<td>13.73</td>
<td>24.99</td>
<td>5.44</td>
</tr>
<tr>
<td>MgO</td>
<td>比</td>
<td>115.1</td>
<td>120.4</td>
<td>159.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>作物</th>
<th>バレイショ</th>
<th>ダイズ</th>
<th>アズキ</th>
<th>インゲン</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>未改造</td>
<td>19.73</td>
<td>21.19</td>
<td>2.96</td>
</tr>
<tr>
<td>K₂O</td>
<td>改造</td>
<td>24.08</td>
<td>22.22</td>
<td>4.08</td>
</tr>
<tr>
<td>CaO</td>
<td>比</td>
<td>122.1</td>
<td>104.9</td>
<td>137.8</td>
</tr>
<tr>
<td>MgO</td>
<td>未改造</td>
<td>7.50</td>
<td>10.29</td>
<td>1.73</td>
</tr>
<tr>
<td>改造</td>
<td>3.17</td>
<td>12.36</td>
<td>2.79</td>
<td>3.58</td>
</tr>
<tr>
<td>比</td>
<td>42.3</td>
<td>120.1</td>
<td>161.3</td>
<td>141.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>作物</th>
<th>バレイショ</th>
<th>ダイズ</th>
<th>アズキ</th>
<th>インゲン</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>未改造</td>
<td>1.44</td>
<td>2.72</td>
<td>0.61</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>改造</td>
<td>2.00</td>
<td>4.16</td>
<td>0.87</td>
</tr>
<tr>
<td>MgO</td>
<td>比</td>
<td>158.9</td>
<td>152.9</td>
<td>142.6</td>
</tr>
</tbody>
</table>
第1図 パレヨの時期別養分濃度の変化
第2図 アズキの時期別養分濃度の変化（金ヶ崎）
第3図 インゲンの時期別養分濃度の変化
4 まとめ

前報に引き続きも糧と豆類について検討した。結果は略報とほぼ同様であった。(1)土壌改良によって各作物
物に共通して淡誔の高まった養分はP₂O₅とMgOであ
る。これは土壌改良資材の投入によって土壌中に富化
されが主な要因と思われる。一方C₃₇も改良
によって多量に富化されるものが高には養分濃度の増
加は明らかできない。これはMgOとの拮抗作用のため
とも考えられるが今後の検討を要する。(2)いもあるいは
は子実中養分濃度については、いずれの作物、いず
れの養分でも改良による濃度の変化は薄葉部に比較す
ると小さく、時期別養分濃度の変化も生育全般を通し
ての変動は小さい傾向を示した。(3)総養分吸収量は改
造による生育量の増大のため、バレーショのC₃₇を除
いていずれの養分も増加した。

畑作物の重金属吸収抑制について

大竹俊博・東海林 覚・吉田 昭
木村敬生・渡辺亀一郎・桜田 博
（山形県農業試験場）

1 まえがき

従来、農耕地の土壌汚染の問題は水田が主で、作物
の重金属吸収や汚染防止に関する研究も水稲を対象と
したものが多く、畑作物を対象としたものは例が少な
い。本試験は、南陽市穴戸の重金属汚染された吉野
川沖積土木田を用に転換し、畑作物を栽培した場合の
重金属の吸収程度及び土壌改良資材による吸収抑制の
効果を検討したものである。

2 試験方法

1 試験地の場所 南陽市穴戸
2 試験地の土壌 黄褐色・壤土Mn型
3 土壌の理化学性（第1表）

第1表 供試土の理化学性（0〜15cm）

<table>
<thead>
<tr>
<th>pH (H₂O)</th>
<th>CEC</th>
<th>塩基飽和度</th>
<th>植酸吸収係数</th>
<th>重金属含有量 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>24.0</td>
<td>59.0</td>
<td>997</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>353.3</td>
<td>784.4</td>
</tr>
</tbody>
</table>

4 供試条件

1 作物及び品種

ダイズ（コッケイ）。バレショ（男爵）。ホウ
レンソウ。ダイコン（時無）。ナス（稲田茄子）。ト
ウモロコシ（交7号）

2 改良対照区分（第2表）

3 各作物の元肥量及び栽培密度（第3表）

第2表 各作物の土壌改良区分

<table>
<thead>
<tr>
<th>試験区名</th>
<th>資材投入量（kg/10a）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>珪カル</td>
</tr>
<tr>
<td>標準</td>
<td>-</td>
</tr>
<tr>
<td>土壌改良</td>
<td>1,500</td>
</tr>
</tbody>
</table>

第3表 各作物の元肥量及び栽培密度

<table>
<thead>
<tr>
<th>作物名</th>
<th>元肥量（kg/ha）</th>
<th>栽培密度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P₂O₅</td>
</tr>
<tr>
<td>ダイズ</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>バレショ</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ホウレンソウ</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>ダイコン</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>ナス</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>トウモロコシ</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

3 試験結果

1 作物の生育及び収量

1) ダイズ

両区とも発芽は良好で初期生育は大差がなかったが、標
準区は生育中期より不良となり、改良区に対比72%の
収量にとどまった。

2) バレショ

両区とも生育は順調で、地上部の生育差は認められ
なかったが、標準区の収量は140kg/haで改良区の72