第5表　年間収量の対照区を100とした時の割合

<table>
<thead>
<tr>
<th>試験</th>
<th>处理</th>
<th>年次・収量</th>
<th>48年</th>
<th>49年</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>生草</td>
<td>風乾物</td>
<td>DCP</td>
</tr>
<tr>
<td>かん水</td>
<td>基準区</td>
<td>91</td>
<td>94</td>
<td>101</td>
</tr>
<tr>
<td>効果</td>
<td>3/4区</td>
<td>97</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>1/3区</td>
<td>103</td>
<td>103</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>追肥後区</td>
<td>95</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>かん水</td>
<td>105</td>
<td>100</td>
<td>106</td>
<td>101</td>
</tr>
<tr>
<td>適正</td>
<td>トールフェスク</td>
<td>168</td>
<td>174</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>マロキラー</td>
<td>69</td>
<td>80</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>赤クローバ</td>
<td>99</td>
<td>101</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>ラジノクローバ</td>
<td>89</td>
<td>94</td>
<td>147</td>
</tr>
</tbody>
</table>

草地における土壌改良試材としてのてんろ石炭の肥効

広田 千秋・野村 忠弘
（青森県畜産試験場）

で、その結果の概要を報告する。

1 まえがき
てんろ石炭は鉄の精錬の際に副生される鉱滓を粉碎したものである。土壌改良試材として有効な成分を含んでおり、その肥効は明らかできない。そこで、草地造成時における土壌改良試材としてのてんろ石炭の肥効を炭カルと珪カルと3カ年にわたって比較検討したのである。

2 試験方法

1 供試材

(1) てんろ石炭（第1表）
(2) 炭カル
(3) 硅カル

第1表　てんろ石炭の成分割合

<table>
<thead>
<tr>
<th>成分含有量（％）</th>
<th>Fe2O3</th>
<th>SiO2</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5～3.0</td>
<td>12～20</td>
<td>28～53</td>
<td>2～6</td>
<td>2～8</td>
<td>600～900 ppm</td>
<td></td>
</tr>
</tbody>
</table>

2 試験区の構成

供試草はO・G 単播、L・O 単播、混播とし64年9月15日にO・G 20、L・O 0.5kg/10aを播種した。混播

第2表　試験区の構成

<table>
<thead>
<tr>
<th>区名</th>
<th>改良材施用量</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>休耕区</td>
<td>0 (kg/10a)</td>
<td>○中量区は緩衝曲線法による pH 6.5</td>
</tr>
<tr>
<td>炭カル</td>
<td>少量区</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>中区</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>多区</td>
<td>1200</td>
</tr>
<tr>
<td>てんろ石炭</td>
<td>少量区</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>中区</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>多区</td>
<td>1400</td>
</tr>
<tr>
<td>硅カル</td>
<td>少量区</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>中区</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>多区</td>
<td>1600</td>
</tr>
</tbody>
</table>

注：珪カル区は参考区として混播のみに設けた。
3 試験園の土壌条件
試験園は未耕地を開墾し設置した。土壌は十和田一
八甲田系に属する火山性黒色土壌で化学性の概要は第
3 表のとおりである。

4 施肥量（第4表）

第3表 原土の化学性

<table>
<thead>
<tr>
<th>部位</th>
<th>pH</th>
<th>酸化吸収数</th>
<th>T-N</th>
<th>置換性塩基(m₉)</th>
<th>塩基置換容量(m₉)</th>
<th>塩基飽和度(％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜10cm</td>
<td>5.53</td>
<td>4.59</td>
<td>2209</td>
<td>3.72</td>
<td>0.51</td>
<td>1.49</td>
</tr>
</tbody>
</table>

第4表 施肥量 （kg/10a）

<table>
<thead>
<tr>
<th>播種法</th>
<th>混播, O・G単播</th>
<th>L・C単播</th>
<th>年次</th>
<th>初年目</th>
<th>2年目</th>
<th>3年目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年目</td>
<td>35 20 10</td>
<td>N—P—K</td>
<td>N—P—K</td>
<td>44 24 14</td>
<td>45 21.5 43</td>
<td></td>
</tr>
<tr>
<td>2年目</td>
<td>20 25 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 試験結果

1 収量
3カ年の合計収量を第1図に示した。O・G 単播区、混播区では各試材間の差は少量区でみられなかったが、
中、多量区ではてんこ石灰は炭カルより約7%の増収を示し、てんこ石灰＞珪カル＞炭カルの順となり、てん
こ石灰の有利性が認められた。L・C 単播区は、てん
こ石灰、炭カルとも施用量の増加に伴い増収が
同様である。各施用量では、炭カルが施用量を増すと減少する
のに対し、てんこ石灰は増収する傾向であった。しか
し、中量区と多量区との差が小さく中量区の施用量が
適当と判断された。珪カルは1、3年目で中量区が多
収となり合計収量も中量区が多収を示した。なお、
L・C は2年目にコガタライムシモドキの被害をうけ
たため、調査は初年目のみとした。

2 牧草中(O・G)の養分含有率
第2図にO・Gの混合サンプルについて、CaO, MgO
の分析値を示した。

CaOは各年度とも炭カル区の含量が高く、次いで
てんろ石灰、珪カル、無改良区の順であった。MgOはてんろ石灰＞珪カル＞炭カル＞無改良区であり、この傾向は3年とも同様であった。CaO、MgOはともに施用量を増すと含有率は高まった。経年的には、CaO、MgOとも低下がみられ、特にCaOで大きかった。K2Oは無改良区＞改良区であったが、各資材間、施用量により差はなかった。

【CaO（％）】

第2図 O・G中の成分含有率（播散区）

3 O・Gのミネラル比
K/Ca+Mg（w・m）比を第5表に示した。各年度とも資材施用量の増加により値は低下した。

【K/Ca+Mg比】

これは、改良資材施用によりKの吸収が抑えられ、Ca、Mgの吸収が促進されたためである。各資材間では、珪カル区の値が高く傾向にあり、てんろ石灰≧炭カルという順であった。初年度はグラステナー発生危険水準（2.2）以上のもは珪カルの少、中量区、てんろ石灰少量区であったが、2年目では各資材ともみられず、3年目は各区ともCa、Mg含量が低下し、Kが高くなったため、各区とも危険水準を上回った。

4 土壌中の養分含量
第6表に土壌中のpH値を示した。pH改良効果は各年度とも炭カル＞てんろ石灰＞珪カルであり、炭カル区は適用直後pHは急速に上昇するが、てんろ石灰はやや緩慢であり極カル区では上昇程度は小さく、また施用量による差も小さかった。

【pH（H2O）】

第5表 オーチャードグラスのK/Ca+Mg比

第3図にEX-Ca、Mgの経年的推移を示した。
EX-CaはpHと同様の傾向を示し、炭カルは含量が高く、その後の減少が大きかった。珪カルは常に低含量で推移しており施用量による差も最も小さかった。
てんろ石灰は両者の間中であった。各資材とも施用量の増加に伴い含有量は増加した。

第6表 土壌のpH

【pH（H2O）】
4 まとめ

土壌改良資材としてのてんち石炭の肥効を炭カル、
珪カルと3年間にわたり比較検討した。その結果、て
んち石炭は収量及び牧草のミネラル組成の面から炭カル、
珪カルより有利なことが認められた。また土壌の
ph及び置換性Caの経年的推移から、炭カルは速効性、
珪カルは速効性、てんち石炭は両者の中間の性質をも
つ資材であることが認められた。

サイレージの周年大量調製試験

—夏期における品質保持—

今 孝三 楠原 明 佐藤公一 福士郁夫 吉川芳秋
（秋田県畜産試験場）

1 まえがき

粗飼料の貯蔵形態には、乾草調製とサイレージとし
て貯蔵する方法があるが、本県のように夏期乾草調製
の困難な地帯では、草地のスプリンフラッシュの対策
を含めた粗飼料の効率的利用ならびに、家畜飼養の省