下水処理汚泥の成分について

田中 伸行・安達 忠弘・瀬野尾昭吾・吉田 昭
（山形県立農業試験場）

Components of Sewage Sludge
Nobuyuki TANAKA, Tadahiro ADACHI, Shogo SENO and Akira YOSHIDA
（Yamagata Prefectural Agricultural Experiment Station）

1 はしがき
現在、下水道の普及とともに下水処理場から大量の汚泥が排出され、汚泥の処理・処分および利用法の解決が急がれている。これら汚泥は農地に利用するには、環境保全等の面から種々の問題があると考えられる。そこで、その一つとして県内の処理場（下水・し尿含む）から排出される汚泥について、肥料成分および重金属含量について調査したので報告する。

2 調査方法
(1) 調査場所 山形・天童（公共下水道）、米沢・新庄・鶴岡・酒田（し尿処理場）
(2) 調査回数 山形 5回、天童 3回、他は2回（月に1回）
(3) 分析方法 肥料成分については、肥料分析法に準じた。重金属については、過塩素酸分解後、ヒ素は比色法、他は原子吸光法によった。

表2 処理法のフローシート

(1) 下水汚泥
各種成分含量について表3に示した。これによると、CV（変動係数）が10〜20％前後であり、時期別の変動は肥料成分、重金属含量を比較的小さいと考えられる。次に、処理場間の差をみると、凝集剤として消石灰を使用している山形ではpH 9.5、石灰含量20.1％と高い。しかも、工場

排水が混入するため鉛、ニッケル、クロム含量が高いと考えられる。天童では全窒素4.3％、全炭素22.4％、硫黄酸3.6％と高い。これは工場排水を含まず生活排水がほとんどのためと考えられ、後述するし尿汚泥の成分含量に近いとみられる。

(2) し尿汚泥
表3 汚泥中の肥料成分、重金属含量（乾物当り）

<table>
<thead>
<tr>
<th>場所・種類</th>
<th>水分 (％)</th>
<th>pH</th>
<th>T-N (％)</th>
<th>T-C (％)</th>
<th>C/N</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>MgO</th>
<th>Cd</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ni</th>
<th>Cr</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>山形 脱水ケーキ</td>
<td>81.3</td>
<td>9.5</td>
<td>1.8</td>
<td>12.0</td>
<td>6.6</td>
<td>1.7</td>
<td>0.1</td>
<td>20.1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>3.2</td>
<td>8.6</td>
<td>13.9</td>
<td>19.4</td>
<td>9.5</td>
<td>11.9</td>
<td>33.8</td>
<td>13.5</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天童</td>
<td>76.4</td>
<td>6.1</td>
<td>4.3</td>
<td>22.4</td>
<td>5.3</td>
<td>3.6</td>
<td>0.3</td>
<td>1.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>1.9</td>
<td>7.0</td>
<td>3.9</td>
<td>9.8</td>
<td>6.1</td>
<td>23.1</td>
<td>13.0</td>
<td>8.2</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>米沢</td>
<td>66.9</td>
<td>7.3</td>
<td>3.4</td>
<td>24.9</td>
<td>7.4</td>
<td>11.5</td>
<td>0.4</td>
<td>3.1</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化剤</td>
<td>85.0</td>
<td>5.5</td>
<td>6.6</td>
<td>38.8</td>
<td>5.8</td>
<td>4.0</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>百日休</td>
<td>72.4</td>
<td>7.2</td>
<td>3.2</td>
<td>22.2</td>
<td>7.0</td>
<td>11.1</td>
<td>0.4</td>
<td>2.8</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新庄</td>
<td>84.0</td>
<td>6.5</td>
<td>8.8</td>
<td>33.3</td>
<td>4.3</td>
<td>5.0</td>
<td>0.3</td>
<td>2.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鶴岡</td>
<td>70.6</td>
<td>7.3</td>
<td>3.1</td>
<td>29.3</td>
<td>9.5</td>
<td>9.7</td>
<td>0.4</td>
<td>2.0</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化剤</td>
<td>83.6</td>
<td>6.7</td>
<td>8.4</td>
<td>36.4</td>
<td>4.4</td>
<td>5.0</td>
<td>0.5</td>
<td>2.4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化剤</td>
<td>76.2</td>
<td>7.2</td>
<td>3.3</td>
<td>30.6</td>
<td>9.4</td>
<td>10.8</td>
<td>0.4</td>
<td>1.7</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>百日休</td>
<td>83.5</td>
<td>6.9</td>
<td>6.6</td>
<td>36.5</td>
<td>5.5</td>
<td>6.8</td>
<td>0.3</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化剤</td>
<td>71.5</td>
<td>7.3</td>
<td>3.3</td>
<td>26.8</td>
<td>8.3</td>
<td>10.8</td>
<td>0.4</td>
<td>2.4</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>5.4</td>
<td>0.8</td>
<td>4.0</td>
<td>14.6</td>
<td>15.7</td>
<td>7.2</td>
<td>0.0</td>
<td>27.4</td>
<td>22.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化剤</td>
<td>84.0</td>
<td>6.4</td>
<td>7.6</td>
<td>36.3</td>
<td>5.0</td>
<td>5.2</td>
<td>0.3</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>0.8</td>
<td>9.7</td>
<td>15.3</td>
<td>6.2</td>
<td>15.2</td>
<td>22.4</td>
<td>38.7</td>
<td>58.2</td>
<td>38.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

処理場内の変動をみると、全般的にCVが小さく肥料成分、重金属含量とも成分の変動が比較的少ない傾向にある。消化剤を含め比較すると、余剰汚泥は全窒素7.6％、全炭素36.3％と高く、消化泥は磷酸10.8％、苦土4.6％以上多い。また、重金専は一部（鉛）を除いて余剰汚泥が高い、し尿泥中の消化、余剰汚泥間には明らかのがみられる。消化泥は水に不溶性の有機物が多いため、加里含量が少ない傾向にある。また、重金属含量は汚泥の約1/2になることが認められる。

(4) 下水汚泥を原料としたコンポストの成分
汚泥とオガクスを1：1（容積比）で混合した天童のコンポスト製品は、水分が50％近くになり臭いもほとんどない。肥料成分を堆肥等他の有機物と比べると、全窒素、総酸含量が高い、加里含量が低い傾向にある。また、重金属含量は汚泥の約1/2になることが認められる。

表4 コンポスト中の成分含量

<table>
<thead>
<tr>
<th></th>
<th>水分 (%)</th>
<th>pH</th>
<th>T-N (%)</th>
<th>T-C (%)</th>
<th>C/N</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
<th>MgO</th>
<th>Cd</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ni</th>
<th>Cr</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>天童 コンポスト</td>
<td>51.0</td>
<td>5.4</td>
<td>2.2</td>
<td>33.5</td>
<td>15.6</td>
<td>1.9</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>1.7</td>
<td>190</td>
<td>1017</td>
<td>25.9</td>
<td>11.6</td>
<td>19.9</td>
<td>13.8</td>
</tr>
<tr>
<td>コンポスト/脱水ケーキ×100</td>
<td>51</td>
<td>150</td>
<td>294</td>
<td>51</td>
<td>92</td>
<td>42</td>
<td>62</td>
<td>26</td>
<td>83</td>
<td>24</td>
<td>46</td>
<td>38</td>
<td>34</td>
<td>54</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

4 まとめ
1. 下水汚泥の形態別の変動は肥料成分、重金属含量とも比較的少ないと考えられる。ただし、山形ではpH、石灰含量が高く、他の肥料成分は天童で高い。また、重金属含量は鉛、ニッケル、クロム含量が天童と比較して山形で高い。これは、凝集剤の違い、処理場の規模の大小、工程毎掛水掛の有無の相違等によると考えられる。
2. 余剰汚泥については、重金属含量を含む処理場の変動は少ない傾向にあるが、消化泥と余剰汚泥間には大きな差が認められる。つまり、消化泥では磷酸、苦土量が高く、余剰汚泥では全窒素含量が高い。
3. 下水汚泥とし尿汚泥を比較すれば、肥料成分はし尿汚泥が高く、重金属含量については下水汚泥が高い傾向にある。
4. コンポストの重金属含量は原料汚泥の約1/2になる。

参考文献
1) 海老原武久他. 下水の農用地への利用に関する研究. 第1報 下水の理化学性と連用試験について. 群馬県農業試験場報告 19, 49–58 (1979).
2) 木之本. 各種下水、し尿汚泥の性質について. 土肥要旨集 №24, p141 (1978).
4) 日本土壌肥料学会編. 下水汚泥 -リサイクルのために.