ダイズ品種の種皮の亀裂（裂皮）について

第4報 播種期・栽植密度の相違による裂皮粒数変動の差異

朝日幸光

（東北農業試験場）

Studies on Seed Coat Cracking in Soybean Varieties

Effect of seeding time and planting density on the occurrence

Yukimitsu ASAHI

（東北農業試験場）

1 緒 言

本報では栽培条件としての播種期及び栽植密度の相違が裂皮粒の発生にどのように影響するかを検討し、若干の知見を得たのでその結果を報告する。なお、この試験は九州農業試験場において実施したものである。

2 試 験 方法

フクユタカ、アキヨシの2品種を供試し、黒田山灰土壌の普通畑に1980年6月26日（早播）、7月18日（標準）及び8月7日（晚播）の3時期に播種した。栽培密度は株幅を60cmとし、株間の調節によって、m2当たり6.6, 13.3, 20.8, 26.6, 39.9, 53.2本の6水準とした。肥料（kg/a）は化成肥料（3–10–10）4堆肥80・苦土石灰10を基肥として施用した。その他は標準耕種法に従った。裂皮の調査は収穫後の風乾種子について行った。

3 試験結果及び考察

1. 調査材料の生育・収穫

表1に示すとおりである。生育量（主茎長、LAI）は、播種期及び栽培密度の相違による変動を示す。標準播種では、試験区ごとに5株を対象にして、各期の生育量を測定した。収穫量は、各期の播種区で、各株の収穫量を算出した。

2. 調査材料の諸形質

平均で、LAIは開花期に調査した。

低収の原因と考えられる。

3. 播種期及び栽培密度の相違による裂皮粒数変動

播種期別の裂皮粒数変動は図1に示すとおりである。播種期別の裂皮粒数変動は、各品種とも裂皮粒数変動を播種期の遅延に伴って低下する傾向が明らかに認められる。裂皮粒の発生に対する低水準は、フクユタカでは6月26日播きに対して7月1日播きで平均35%、8月7日播きで平均74%であり、アキヨシでは、それぞれ54%、84%であった。フクユタカはアキヨシに比べて低水準が小さかった。早播きに伴って裂皮粒数変動が低下したことは、低水準が小さくなったためと考えられる。

栽培密度別の裂皮粒数変動をみると（図1）。同一播種期

<table>
<thead>
<tr>
<th>品種</th>
<th>密度 (本/m2)</th>
<th>6月26日播き</th>
<th>7月18日播き</th>
<th>8月7日播き</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.6</td>
<td>7.5</td>
<td>6.0</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td>8.3</td>
<td>7.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>20.8</td>
<td>9.0</td>
<td>6.6</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>26.6</td>
<td>9.2</td>
<td>6.4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>39.9</td>
<td>10.1</td>
<td>6.4</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>53.2</td>
<td>9.8</td>
<td>8.6</td>
<td>13.1</td>
</tr>
<tr>
<td>平均</td>
<td>9.0</td>
<td>6.4</td>
<td>31.3</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>品種</th>
<th>密度 (本/m2)</th>
<th>6月26日播き</th>
<th>7月18日播き</th>
<th>8月7日播き</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.6</td>
<td>7.4</td>
<td>6.2</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>13.3</td>
<td>8.3</td>
<td>5.5</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>20.8</td>
<td>9.0</td>
<td>6.0</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>26.6</td>
<td>9.6</td>
<td>7.8</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>39.9</td>
<td>10.0</td>
<td>7.4</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>53.2</td>
<td>10.1</td>
<td>7.8</td>
<td>15.1</td>
</tr>
<tr>
<td>平均</td>
<td>9.2</td>
<td>6.5</td>
<td>38.1</td>
<td>73</td>
</tr>
</tbody>
</table>

注：LAIは開花期に調査した。
では、栽培密度を増すにつれて葉材粒数歩合は高まり、最高値に達し、その後、低下する傾向が認められる。それら
の傾向は両品種とも同様の傾向を示す。栽培密度を増すにつれて葉材粒数歩合は高まり、最高値に達し、その後、低下する傾向が認められる。highest valuerは

図1 播種期・栽培密度と葉材粒数歩合

注: 栽培密度 (m2/1000) 1: 6.6, 2: 13.3, 3: 20.8, 4: 26.6, 5: 39.9, 6: 53.2

3) 百粒重と葉材粒数歩合との関係
葉材粒数歩合は葉材粒の発生が多く、栽培密度を増すにつれて増加し、その後、減少すること。栽培密度を増すにつれて葉材粒数歩合は高まり、最高値に達し、その後、低下する傾向が認められる。highest valuerは

図2 百粒重と葉材粒数歩合との関係

注: 1) フクユタカ アキヨシ 6月26日播き
7月18日播き
8月7日播き

2) 栽培密度 (m2/1000) 1: 6.6, 2: 13.3, 3: 20.8, 4: 26.6, 5: 39.9, 6: 53.2

4) 摘 要
フクユタカ、アキヨシの2品種を供試し、異なる播種
期 (6月26日播き、7月18日播き、8月7日播き) 及び栽培
密度 (6.6, 13.3, 20.8, 26.6, 39.9, 53.2 m2/1000) で栽培
し、収穫後の乾燥重量を測定し、葉材粒の発生を調査した。
その結果、1) 葉材粒数歩合は葉材粒の発生に著しい差異があり、栽培密度を増すと高まり、栽培密度を増すと低落する傾向が認められる。cultivation densityは葉材粒の発生に著しい差異があり、栽培密度を増すと高まり、栽培密度を増すと低落する傾向が認められる。cultivation density is

引用文献
1) 朝日昇光・井口武夫・財津昌幸．ダイズ品種の葉材の
龟裂について．第1報 秋ダイズ品種における龟裂発生
調査．九州農業研究 42, 36 (1980).
2) 佐々木統一・酒井英幸．大豆品種「トウシズ」にみ
られる龟裂粒について．北農 48 (11), 1-14 (1981)
3) 鈴木光孝・高橋英一・宮川英雄．大豆の龟裂発生
と気象条件による発生変異．東北農業研究 25, 59-60 (1979)