水稲品種「コガネヒカリ」の収量性と期待生育について

高橋 政夫 萩原 武雄 畠山 均
（岩手県立農業試験場山北分場）

High-yielding Ability and Desirable Growth of Rice Variety “Koganehikari”
Masao TAKAHASHI, Takeo OGIHARA and Hitoshi HATAKEYAMA
(Kennan Branch, Iwate-ken Agricultural Experiment Station)

1 はじめに

水稲品種「コガネヒカリ」は、昭和57年に岩手県の奨励品種に採用され、以後安定した多収性により栽培面積の拡大が著しい。昭和59年には約6,270 ha（作付比6.2％）の栽培面積に達しており、特に紫波・花巻・上北地区では基幹品種となりつつある。

岩手県南地域は肥沃な土壌が多い反面、登熟期間の日照時間が少ないため、登熟不良が収量向上を阻害していると言われている。そこで、県中部南部における単収向上をねらいとし、強稈・耐肥性・登熟性にすぐれたコガネヒカリの普及・拡大のために、多収（700 kg/10 a 収量水準）の期待生育型について検討した。

表1 収量水準別生育相

<table>
<thead>
<tr>
<th>項目</th>
<th>収量レベル</th>
<th>幹数期*</th>
<th>幹形成期</th>
<th>成熟期</th>
<th>総数</th>
<th>穂数</th>
<th>千粒重</th>
<th>700 kg/10 a以下</th>
</tr>
</thead>
<tbody>
<tr>
<td>I（600 kg/10 a）</td>
<td>68</td>
<td>2.3</td>
<td>299</td>
<td>5.1</td>
<td>402</td>
<td>5.7</td>
<td>615</td>
<td>6.0</td>
</tr>
<tr>
<td>II（600 – 650 kg/10 a）</td>
<td>95</td>
<td>3.2</td>
<td>367</td>
<td>6.2</td>
<td>495</td>
<td>7.1</td>
<td>802</td>
<td>8.5</td>
</tr>
<tr>
<td>III（650 kg/10 a以上）</td>
<td>98</td>
<td>3.6</td>
<td>378</td>
<td>7.5</td>
<td>571</td>
<td>9.8</td>
<td>902</td>
<td>10.1</td>
</tr>
</tbody>
</table>

注：*6月下旬頃

1）水準I（600 kg/10 a以下、6区）

分収数期からの生育量不足により、穂数・穂数の確保が不十分であった。反面、登熟歩合は約88％と高い値を示した。

2）水準II（600 – 650 kg/10 a、15区）

分収数期の生育量は十分確保し穂数は多いが、幹形成期以後の生育量不足により一穂粒数が少なく、十分な構成要素が確保されていない。

3）水準III（650 kg/10 a以上、16区）

650 kg/10 a以上の多収レベルでは、生育全期を通じて生育量が大きい。出穂数期における乾物重は900 g/m²、窒素吸収量は10 g/m²を確保し、穂数・穂数ともに十分であった。

以上のように、生育途中における生育量不足・生育停滞は、穂数・穂数を減少させ多収を得ることはできない。コガネヒカリは登熟性に優れる品種であり、いわゆるsinkの確保が多収のポイントと考えられる。

2 試験方法

昭和57年・58年は、基肥量・追肥時期を異なる施肥反応試験を実施した。試験区は各自9区、17区設定した。昭和59年は、生育相の異なる栽培例11区について調査した。

これらから、700 kg/10 a収量水準を目標としたコガネヒカリの多収型の期待生育を、乾物生産・窒素条件・収量構成要素の面から検討した。

3 結果及び考察

(1) 収量水準別生育相

3か年での試験において収量の最低の区は511 kg/10 a、最高は755 kg/10 aであった。収量水準を3段階に区分し、各収量水準における生育相を見ると表1のとおりであった。

(2) 収量（700 kg/10 a水準）の期待生育量

700 kg/10 aの収量対応する穂数は約40千粒/m²である。しかし、35千粒/m²以上では収量は増加傾向となり37 〜40千粒/m²で安定して多収が得られている。コガネヒカリは、登熟性に優れておりこの穂数レベルにおいて玄米千粒重23 g、登熟歩合80％確保が可能と考えられる。
表2 各年次における多収例及びその耕種概要
a) 収量及び構成要素

<table>
<thead>
<tr>
<th>No</th>
<th>年次 (年)</th>
<th>玄米重 (kg/a)</th>
<th>穂数 (本/m²)</th>
<th>角数 (×10²粒/m²)</th>
<th>千粒重 (g)</th>
<th>達成歩合 (%)</th>
<th>怪長 (cm)</th>
<th>倒伏</th>
<th>品質 (等級)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57</td>
<td>67.5</td>
<td>615</td>
<td>40.5</td>
<td>21.4</td>
<td>74.4</td>
<td>82.9</td>
<td>3上</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>69.6</td>
<td>482</td>
<td>37.4</td>
<td>24.0</td>
<td>74.7</td>
<td>75.5</td>
<td>0</td>
<td>2上</td>
</tr>
<tr>
<td>3</td>
<td>~</td>
<td>67.3</td>
<td>537</td>
<td>35.7</td>
<td>24.2</td>
<td>78.0</td>
<td>74.4</td>
<td>0</td>
<td>2上</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>75.7</td>
<td>553</td>
<td>41.5</td>
<td>22.8</td>
<td>80.0</td>
<td>92.6</td>
<td>2.0</td>
<td>1下</td>
</tr>
<tr>
<td>5</td>
<td>~</td>
<td>75.5</td>
<td>519</td>
<td>40.5</td>
<td>23.3</td>
<td>84.3</td>
<td>84.3</td>
<td>0</td>
<td>1下</td>
</tr>
</tbody>
</table>

乾物生産及び窒素吸収の過程は、収量構成要素と密接な関係をもつ。特に出穂期における乾物重・窒素吸収量は穂数・穂数の確保と密接な関係があり、出穂後の登熟にも大きく影響する。

以上のことから、コガネヒカリの700 kg / 10 aを目標として多収の期待生育型を表3のとおり策定した。

表3 多収型 (700 kg / 10 a) の期待生育相
a) 乾物生産及び窒素条件

<table>
<thead>
<tr>
<th>項目</th>
<th>分けつ期 (6月下旬)</th>
<th>幼穂形成期</th>
<th>殻数分裂期</th>
<th>出穂期</th>
<th>成熟期</th>
</tr>
</thead>
<tbody>
<tr>
<td>期待値</td>
<td>葉身</td>
<td>2.8 〜 3.2</td>
<td>2.5 〜 2.8</td>
<td>2.3 〜 2.5</td>
<td>1.2 〜 1.4</td>
</tr>
<tr>
<td></td>
<td>室穂密度</td>
<td>3.5 〜 4.0</td>
<td>1.8 〜 2.3</td>
<td>1.5 〜 1.8</td>
<td>1.1 〜 1.3</td>
</tr>
<tr>
<td></td>
<td>物重 (g / m²)</td>
<td>100 〜 120</td>
<td>350 〜 450</td>
<td>550 〜 700</td>
<td>900 〜 1,100</td>
</tr>
<tr>
<td></td>
<td>穂素吸収量 (g / m²)</td>
<td>3.0 〜 4.0</td>
<td>7.0 〜 8.0</td>
<td>8.5 〜 9.5</td>
<td>10 〜 12</td>
</tr>
</tbody>
</table>

b) 収量構成要素

<table>
<thead>
<tr>
<th>項目</th>
<th>穂数 (本/m²)</th>
<th>一穂穂数 (粒)</th>
<th>穂数 (×10²粒/m²)</th>
<th>玄米千粒重 (g)</th>
<th>達成歩合 (%)</th>
<th>怪長 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>期待値</td>
<td>500 〜 550</td>
<td>70 〜 75</td>
<td>37 〜 40</td>
<td>23 〜 23.5</td>
<td>80 〜 85</td>
<td>80 〜 85</td>
</tr>
</tbody>
</table>

4 まとめ
(1) コガネヒカリにおける多収 (700 kg / 10 a収量水準) の期待生育型について検討した。
(2) 700 kg / 10 aの収量を得るには、穂数37 〜 40千粒 / m²を必要とする。出穂期における乾物重は900 〜 1000 g / m²、窒素吸収量10 〜 12 g / m²を確保する必要がある。
(3) コガネヒカリは、本県における中〜晩生種では最も多収性の品種であり、この品種の普及拡大は、県中〜南部における単収向上の一助となると考える。